skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ryu, Taeho"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Three recent global simulations of tidal disruption events (TDEs) have produced, using different numerical techniques and parameters, very similar pictures of their dynamics. In typical TDEs, after the star is disrupted by a supermassive black hole, the bound portion of the stellar debris follows highly eccentric trajectories, reaching apocenters of several thousand gravitational radii. Only a very small fraction is captured upon returning to the vicinity of the supermassive black hole. Nearly all of the debris returns to the apocenter, where shocks produce a thick irregular cloud on this radial scale and power the optical/UV flare. These simulation results imply that over a few years, the thick cloud settles into an accretion flow responsible for the long-term emission. Despite not being designed to match observations, and without any free parameters, the dynamical picture given by the three simulations aligns well with observations of typical events, correctly predicting the flares’ typical total radiated energy, luminosity, temperature, and emission-line width. On the basis of these predictions, we provide an updated method (TDEmass) to infer the stellar and black hole masses from a flare’s peak luminosity and temperature. This picture also correctly predicts that the luminosity observed years after the flare should be nearly constant. In addition, we show that in a magnitude-limited survey, if the intrinsic rate of TDEs is independent of black hole mass, the detected events will preferentially have black hole masses ∼106.3±0.3Mand stellar masses ∼1M
    more » « less
    Free, publicly-accessible full text available July 25, 2026
  2. Abstract At least three members of the recently identified class of fast luminous blue optical transients show evidence of late-time electromagnetic activity in great excess of what was predicted by an extrapolation of the early time emission. In particular, AT2022tsd displays fast, bright optical fluctuations approximately a month after the initial detection. Here we propose that these transients are produced by exploding stars in black hole binary systems and that the late-time activity is due to the accretion of clumpy ejecta onto the companion black hole. We derive the energetics and timescales involved, compute the emission spectrum, and discuss whether the ensuing emission is diffused or not in the remnant. We find that this model can explain the observed range of behaviors for reasonable ranges of the orbital separation and the ejecta velocity and clumpiness. Close separation and clumpy, high-velocity ejecta result in bright variable emission, as seen in AT2022tsd. A wider separation and smaller ejecta velocity, conversely, give rise to fairly constant emission at a lower luminosity. We suggest that high-cadence, simultaneous, panchromatic monitoring of future transients should be carried out to better understand the origin of the late emission and the role of binarity in the diversity of explosive stellar transients. 
    more » « less
  3. Abstract While supermassive binary black holes (SMBBHs) inspiral toward merger they may also accrete matter from a surrounding disk. To study the dynamics of this system requires simultaneously describing the evolving spacetime and the magnetized plasma. We present the first relativistic calculation simulating two equal-mass, nonspinning black holes as they inspiral from a 20M(G=c= 1) initial separation almost to merger. Our results imply important observational consequences: for instance, the accretion rate M ̇ onto the black holes first decreases and then plateaus, dropping by only a factor of ∼3 despite the rapid inspiral. An estimated bolometric light curve follows the same profile, suggesting some merging SMBBHs may be significantly luminous past the predicted circumbinary disk decoupling. The minidisks are nonstandard: Reynolds, not Maxwell, stresses dominate, and they oscillate between two states. In one part of the cycle, “sloshing” streams transfer mass between minidisks, carrying kinetic energy at a rate sometimes as high as the peak minidisk bolometric luminosity. We also discover that episodic accretion drives time-varying minidisk tilts. These complex dynamics all contribute to unique cyclical behavior in the light curves of late-time inspiraling SMBBHs. The poloidal magnetic flux on the black holes is roughly constant at a dimensionless levelϕ∼ 2–3, but doubles just before merger; for significant black hole spin, this flux predicts powerful jets with variability driven by binary dynamics, another potentially unique electromagnetic signature. This simulation is the first to employ our multipatch infrastructure PatchworkMHD, decreasing the computational expense to ∼3% of conventional single-grid methods’ cost. 
    more » « less
  4. Abstract Nuclear star clusters (NSCs), made up of a dense concentration of stars and the compact objects they leave behind, are ubiquitous in the central regions of galaxies surrounding the central supermassive black hole (SMBH). Close interactions between stars and stellar-mass black holes (sBHs) lead to tidal disruption events (TDEs). We uncover an interesting new phenomenon: for a subset of these, the unbound debris (to the sBH) remains bound to the SMBH, accreting at a later time, thus giving rise to a second flare. We compute the rate of such events and find them ranging within 10−6–10−3yr−1gal−1for SMBH mass ≃106–109M. Time delays between the two flares spread over a wide range, from less than a year to hundreds of years. The temporal evolution of the light curves of the second flare can vary between the standardt−5/3power law to much steeper decays, providing a natural explanation for observed light curves in tension with the classical TDE model. Our predictions have implications for learning about NSC properties and calibrating its sBH population. Some double flares may be electromagnetic counterparts to LISA extreme-mass-ratio inspiral sources. Another important implication is the possible existence of TDE-like events in very massive SMBHs, where TDEs are not expected. Such flares can affect spin measurements relying on TDEs in the upper SMBH range. 
    more » « less
  5. Abstract Accretion of debris seems to be the natural mechanism to power the radiation emitted during a tidal disruption event (TDE), in which a supermassive black hole tears apart a star. However, this requires the prompt formation of a compact accretion disk. Here, using a fully relativistic global simulation for the long-term evolution of debris in a TDE with realistic initial conditions, we show that at most a tiny fraction of the bound mass enters such a disk on the timescale of observed flares. To “circularize” most of the bound mass entails an increase in the binding energy of that mass by a factor of ∼30; we find at most an order-unity change. Our simulation suggests it would take a timescale comparable to a few tens of the characteristic mass fallback time to dissipate enough energy for “circularization.” Instead, the bound debris forms an extended eccentric accretion flow with eccentricity ≃0.4–0.5 by ∼two fallback times. Although the energy dissipated in shocks in this large-scale flow is much smaller than the “circularization” energy, it matches the observed radiated energy very well. Nonetheless, the impact of shocks is not strong enough to unbind initially bound debris into an outflow. 
    more » « less
  6. Abstract Close encounters between stellar-mass black holes (BHs) and stars occur frequently in dense star clusters and in the disks of active galactic nuclei. Recent studies have shown that in highly eccentric close encounters, the star can be tidally disrupted by the BH in a microtidal disruption event (microTDE), resulting in rapid mass accretion and possibly bright electromagnetic signatures. Here we consider a scenario in which the star might approach the stellar-mass BH in a gradual, nearly circular inspiral, under the influence of dynamical friction in a circum-binary gas disk or three-body interactions in a star cluster. We perform hydrodynamics simulations of this scenario using the smoothed particle hydrodynamics codePHANTOM. We find that under certain circumstances (for initial eccentricitye0≳ 0.4 and penetration factorβ= 1, ore0< 0.4 andβ≲ 0.67), the mass of the star is slowly stripped away by the BH. We call this gradual tidal disruption a “tidal-peeling event.” Additionally, we discover that some low-eccentricity microTDEs (e0< 0.4 andβ= 1) are a new form of fast luminous transients similar to parabolic microTDEs. Depending on the initial distance and eccentricity of the encounter, these low-eccentricity microTDEs might exhibit significant accretion rates and orbital evolution distinct from those of a typical (eccentric) microTDE. 
    more » « less
  7. Abstract Extreme tidal disruption events (eTDEs), which occur when a star passes very close to a supermassive black hole, may provide a way to observe a long-sought general relativistic effect: orbits that wind several times around a black hole and then leave. Through general relativistic hydrodynamics simulations, we show that such eTDEs are easily distinguished from most tidal disruptions, in which stars come close, but not so close, to the black hole. Following the stellar orbit, the debris is initially distributed in a crescent, it then turns into a set of tight spirals circling the black hole, which merge into a shell expanding radially outwards. Some mass later falls back toward the black hole, while the remainder is ejected. Internal shocks within the infalling debris power the observed emission. The resulting lightcurve rises rapidly to roughly the Eddington luminosity, maintains this level for between a few weeks and a year (depending on both the stellar mass and the black hole mass), and then drops. Most of its power is in thermal X-rays at a temperature ∼(1–2) × 10 6 K (∼100–200 eV). The debris evolution and observational features of eTDEs are qualitatively different from ordinary TDEs, making eTDEs a new type of TDE. Although eTDEs are relatively rare for lower-mass black holes, most tidal disruptions around higher-mass black holes are extreme. Their detection offers a view of an exotic relativistic phenomenon previously inaccessible. 
    more » « less
  8. ABSTRACT Multibody dynamical interactions of binaries with other objects are one of the main driving mechanisms for the evolution of star clusters. It is thus important to bring our understanding of three-body interactions beyond the commonly employed point-particle approximation. To this end, we here investigate the hydrodynamics of three-body encounters between star–black hole (BH) binaries and single stars, focusing on the identification of final outcomes and their long-term evolution and observational properties, using the moving-mesh hydrodynamics code AREPO. This type of encounter produces five types of outcomes: stellar disruption, stellar collision, weak perturbation of the original binary, binary member exchange, and triple formation. The two decisive parameters are the binary phase angle, which determines which two objects meet at the first closest approach, and the impact parameter, which sets the boundary between violent and non-violent interactions. When the impact parameter is smaller than the semimajor axis of the binary, tidal disruptions and star-BH collisions frequently occur when the BH and the incoming star first meet, while the two stars mostly merge when the two stars meet first instead. In both cases, the BHs accrete from an accretion disc at super-Eddington rates, possibly generating flares luminous enough to be observed. The stellar collision products either form a binary with the BH or remain unbound to the BH. Upon collision, the merged stars are hotter and larger than the main sequence stars of the same mass at similar age. Even after recovering their thermal equilibrium state, stellar collision products, if isolated, would remain hotter and brighter than main sequence stars until becoming giants. 
    more » « less
  9. ABSTRACT Stars embedded in active galactic nucleus (AGN) discs or captured by them may scatter onto the supermassive black hole (SMBH), leading to a tidal disruption event (TDE). Using the moving-mesh hydrodynamics simulations with arepo, we investigate the dependence of debris properties in in-plane TDEs in AGN discs on the disc density and the orientation of stellar orbits relative to the disc gas (pro- and retro-grade). Key findings are: (1) Debris experiences continuous perturbations from the disc gas, which can result in significant and continuous changes in debris energy and angular momentum compared to ‘naked’ TDEs. (2) Above a critical density of a disc around an SMBH with mass M• [ρcrit ∼ 10−8 g cm−3 (M•/106 M⊙)−2.5] for retrograde stars, both bound and unbound debris is fully mixed into the disc. The density threshold for no bound debris return, inhibiting the accretion component of TDEs, is $$\rho _{\rm crit,bound} \sim 10^{-9}{\rm g~cm^{-3}}(M_{\bullet }/10^{6}\, {\rm M}_{\odot })^{-2.5}$$. (3) Observationally, AGN-TDEs transition from resembling naked TDEs in the limit of ρdisc ≲ 10−2ρcrit,bound to fully muffled TDEs with associated inner disc state changes at ρdisc ≳ ρcrit,bound, with a superposition of AGN + TDE in between. Stellar or remnant passages themselves can significantly perturb the inner disc. This can lead to an immediate X-ray signature and optically detectable inner disc state changes, potentially contributing to the changing-look AGN phenomenon. (4) Debris mixing can enrich the average disc metallicity over time if the star’s metallicity exceeds that of the disc gas. We point out that signatures of AGN-TDEs may be found in large AGN surveys. 
    more » « less
  10. ABSTRACT Dynamical interactions involving binaries play a crucial role in the evolution of star clusters and galaxies. We continue our investigation of the hydrodynamics of three-body encounters, focusing on binary black hole (BBH) formation, stellar disruption, and electromagnetic (EM) emission in dynamical interactions between a BH-star binary and a stellar-mass BH, using the moving-mesh hydrodynamics code AREPO. This type of encounters can be divided into two classes depending on whether the final outcome includes BBHs. This outcome is primarily determined by which two objects meet at the first closest approach. BBHs are more likely to form when the star and the incoming BH encounter first with an impact parameter smaller than the binary’s semimajor axis. In this case, the star is frequently disrupted. On the other hand, when the two BHs encounter first, frequent consequences are an orbit perturbation of the original binary or a binary member exchange. For the parameters chosen in this study, BBH formation, accompanied by stellar disruption, happens in roughly one out of four encounters. The close correlation between BBH formation and stellar disruption has possible implications for EM counterparts at the binary’s merger. The BH that disrupts the star is promptly surrounded by an optically and geometrically thick disc with accretion rates exceeding the Eddington limit. If the debris disc cools fast enough to become long-lived, EM counterparts can be produced at the time of the BBH merger. 
    more » « less